
MSIM: A Pattern Based Lossless Data Compressor 

1Angel Kuri-Morales, Oscar Herrera-Alcántara 

1Instituto Tecnológico Autónomo de México.  
Río Hondo No.1, Tizapán San Angel, C.P. 01000, MÉXICO.  

akuri@itam.mx

Abstract. We present a lossless data compression method based on the identifi-
cation of unbounded patterns within a message. The patterns are called meta-
symbols and consist of groups non-necessarily neighboring symbols. Metasym-
bols are selected under the criterion that the original message can be re-
expressed in the most compact way using an efficient coding scheme. We have 
shown that the problem of discovering metasymbols is NP-Hard and as an ap-
proach to the solution we developed an algorithm called MSIM. The perform-
ance of MSIM was tested on a set of messages that contains known metasym-
bols. Then we use a reference compressor (REF) which yields a compression 
function K to evaluate the theoretical limit of compression and then compare 
the performance of MSIM relative to REF. MSIM has a statistically significant 
very similar performance to REF and represents not only a compressor but also 
an excellent tool to discover unknown patterns in arbitrary messages. 

1    Introduction 

During the last decades several methods for lossless data compression have been pro-
posed such as RLE[1], Huffman Coding[2],  Arithmetic Coding[3], LZ[4], BWT[5], 
and PPM[6]. We present a method for lossless data compression where an original 
message m is re-expressed in the most compact way by identifying patterns. Patterns 
are called metasymbols and groups non-necessarily symbols in m.  

Compressing with metasymbols has two main motivations: 
1. To achieve maximum compression for m. 
2. To identify high order structures in arbitrary sets of data. 

The problem of identifying the metasymbols that allow us to re-express m in the 
most compact way is NP-Hard[7]. Considering this we appeal to soft computing tech-
niques and particularly to a Genetic Algorithm called MSIM that identifies the al-
ready mentioned metasymbols and achieves maximum compression. In section 2 we 
describe MSIM, in section 3 we discuss its efficiency to discover metasymbols, in 
section 4 we present some experimental results. Finally, in section 5 we offer our 
conclusions. The performance of MSIM as a compressor and as a tool for metasym-
bolic discovery is supported statistically analyzing a set of 10,500 messages. Experi-
mental results are satisfactory and show that MSIM does not depends of the content 
of the messages and is able to identify structural patterns. We show that MSIM per-
formance is similar to the theoretical compressor REF which has a priori knowledge 
of the metasymbols. From the analysis we confirm that, if there are metasymbols in 

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 183-192



the message, MSIM will discover them with statistical certainty. Future applications 
include protein sequences analysis and time series classification based on their plausi-
ble compressibility. 

We define compression as 

message  compressed oflength 
 oflength nCompressio m

=  (1) 

2    Compression with metasymbols 

We model a message m as an one-dimensional array of symbols; metasymbols are 
groups of these symbols and have four basic properties: 
1. Order |Mi|. The number of symbols that the i-th metasymbol includes. 
2. Frequency |fi|. The number of repetitions of the i-th metasymbol in m. 
3. Gaps. The spaces between the symbols of a metasymbol. 
4. Positions. The indices of the first symbol of all the instances of a metasymbol. 
 

As an example consider an hypothetical message m = “A0a1D2b3E4c5F6d7e8BB9f10-
g11C12h13i14j15k16D17l18E19m20F21n22a23o24A25p26A27q28r29s30t31u32v33B34B w35BB36C37x38C39
D40y41E42D43F44E45z46F47” with |m| = 48 and where the positions of the symbols are 
denoted by subindices. To ease visualization we include a two-dimensional matrix for 
m as we show in figure 1. 

 

 
Fig. 1. A bi-dimensional representation of a message 

We can appreciate a first metasymbol (“ABC”) at positions 0, 25 and 27 with gaps 
of size 9 and 3 respectively. In what follows we will use the representation 
M1=A9BB3C: 0, 25, 2 which is read: There is an “A” at position 0, a “B” 9 positions 
away from “A” and a “C” 3 positions away “B”; the metasymbol is repeated at posi-
tion 25 and 2 away from 25 (25+2=27). A second metasymbol is M2=D2E2F: 2, 15, 
23, 3. The symbols that do not form repeated patterns are lumped in a pseudo-
metasymbol we call the filler. One possible efficient encoding depends on the fact 
that the filler is easily determined as the remaining space once the other metasymbols 
are known. Hence 

Mfiller=abcdefghijklmnaopqrstuvwxyz 

Kuri A., Herrera O.184



Metasymbolic search consists not only in the identification of repeated patterns but 
also in the selection of those which imply the minimum number of bits to re-express 
m. In the last example we assume, for simplicity, that metasymbols M1, M2 and Mfiller 
comply with this criterion but, as we pointed out above, this problem is NP-hard. 
Therefore, we have developed an efficient Genetic Algorithm to tackle it. 

We describe the proposed encoding scheme: 
Let λ  be the number of bits of each symbol (in the example λ=8) 
Let μ  be the number of metasymbols  (in the example μ=3) 
We use nibble1 ‘a’ to indicate the value of λ in binary2. In the example a=10002. 
We use nibble ‘b’ to indicate the number of bits required to code the value of μ in bi-
nary. In the example b=00102 and μ is coded as μ=112. 
Likewise, the maximum gap for M1 is 9, and we need g1= ⎡ ⎤19log2 + =3 bits to encode 
this value in binary. The other gaps for M1 will be encoded with g1 bits. 
We use nibble ‘c1’ to indicate the number of bits required by the g1 value. In the ex-
ample c1=00112. 
The maximum position for M1 is 25 and we need p1= ⎡ ⎤125log2 + =5 bits to encode 
this value in binary. The positions of the other instances of M1 will be encoded with 
p1 bits. 
We use nibble ‘d1’ to indicate the number of bits required by the p1 value. In the ex-
ample c1=01012  
|M1 |=3 and we need 3λ bits to encode its content. 
The maximum gap for M2 is 2, and we need g2= ⎡ ⎤12log2 + =3 bits to encode this 
value in binary. The other gaps for M2 will be encoded with g2 bits. 
We use nibble ‘c2’ to indicate the number of bits required by the g2 value. In the ex-
ample c2=00112. 
The maximum position for M2 is 23 and we need p2= ⎡ ⎤123log2 + =5 to encode this 
value in binary. The positions of the other instances of M2 will be encoded with p2 
bits. 
We use nibble ‘d1’ to indicate the number of bits required by the p2 value. In the ex-
ample c2=01012. 
|M2 | = 3 and we need 3λ bits to encode this content. 
Also, |Mfiller|=30 and is simply an enumeration of values, Therefore, we need 30λ bits 
to encode it.  
 
The number of bits for m expressed as metasymbols is given by 

) f|M||| ( λ       

)pfλ|M|dcg|1M(|μbaK

ii

iiiiiii

1M

1i

∑−+

+++++−∑+++=
−

=

m
 

(2) 

                                                           
1 By “nibble” we mean 4 consecutive bits 
2 We simply put “binary” when referring to weighted binary 

MSIM: A Pattern Based Lossless Data Compressor 185



2.1 Metasymbolic search   

The GA developed for metasymbolic Search (MSIM) is based on the Vasconcelos's 
Genetic Algorithm[8] which codes individuals as binary strings and has three opera-
tors: selection, mutation and crossover. VGA’s mutation assumes a binary coding of 
the individuals, mutation replaces a bit’s value by its complement with probability Pm. 
VGA Crossover requires two individuals and interchanges their genetic material with 
probability Pc. Selection is deterministic and elitist. 
In the case of MSIM, the individuals are permutations of the array of indices of m in 
the interval [0, |m|-1] and each index is coded in binary requiring of  bits. 
A metasymbol’s span is gotten from the indices of an individual by looking for an as-
cending order and reading from left to right. This representation warrants that each 
symbol belongs exclusively to one metasymbol as shown in Figure 2. 

⎡ ⎤||log  2 m

 
0 9 12     2 4 6    1 3 5 7 8 10 11 13 14 15 16 18 20 22 23 24 26 28 29 30 31 32 33  
 
35 38 41 46    40 42 44    43 45 47   25 34 37    27 36 39    17 19 21  
 
M1       A0BB9C12,   A25 B34 C37,   A27 B36 C39
M2       D2 E4 F6,   D17 E19 F21,    D40 E42 F44, D43 E45 F47
MFiller  a1b3c5d7e8f10g11h13i14j15k16l18m20n22a23o24p26q28r29s30t31u32v33w35x38y41z46

Fig. 2. A hypothetical individual of MSIM 

 A=  
B = 

9  8   4   |   5  6  7     |  1  3  2  10 
8  7   1   |   2  3  10   |  9  5  4  6 

 A’= 
B’=  

9  8   4   |   2  3  10    |  1  6  5  7 
8  10  1  |   5  6  7      |  9  2  4  3 

Fig. 3. Crossover operator for MSIM 
 
MSIM does not work on the binary genotype as VGA does; it has special operators 
that work on the phenotype (indices represented in binary) and maintains the indi-
viduals in the feasible region. MSIM has 3 operators: mutation, crossover and catas-
trophe. Mutation interchanges two indices of an individual and crossover is an opera-
tor that acts on two individuals (A, B) and uses PMX[9] to interchange the indices 
from one individual to the other. It ensures that there are no repeated indices in the 
first individual and that the same indices are missing in the other. Fig. 3 Illustrates 
PMX. 
2.1.1 Catastrophe. An inconvenience of K is that it considers the bits used by the re-
expressed message if the metasymbols are known; to know the metasymbols, on the 
other hand, we need to minimize K. This leads to a vicious circle whose way out is 
described next. We propose an on-line method for metasymbol searching. Note that 
the first 3 terms a, b and μ of ec. 2 may be neglected (they represent a few bits) and 
that the fourth term (the summation) represents the number of bits used by all meta-
symbols. Finally, the fifth term represents the number of bits required by the filler. 
From these considerations we define a discriminant di that corresponds to the number 
of bits required by the i-th metasymbol. Hence the fourth term can be expressed as 

Kuri A., Herrera O.186



)pfλ|M|dcg|1M(|d iiiiiii

1M

1i
i

1M

1i
++++−∑=∑

−

=

−

=
 

(3) 

where  

iiiiiiii pfλ|M|dcg|1M|d ++++−=  (4) 

The main advantage of di is that it does not depend of the other metasymbols and, 
consequently, we can search metasymbols iteratively by comparing their di values and 
selecting the one with minimum value. The catastrophe operator is in charge of this 
task: it encodes the metasymbols as individuals of MSIM and inserts them as potential 
individuals into the population. The algorithm for the catastrophe algorithm is as fol-
lows: 
 
Let i = 1 
Mark all the symbols of m as free nodes, FreeNodes = |m| and LEN = 1 
Do 

D= Number of different symbols of m 
For j=1 to j=D 
     sj0 = j-th different symbol of m  
     Mark as used all instances of sj0 
     Do 

Identify the symbol sjLEN with the highest frequency (fjLEN) nearest to any   
sj0 (to gLEN positions) and mark all the instances of sjLEN as free nodes. If 
there is more than one symbol with the same frequency, select sjLEN ran-
domly. 
Free the symbols sjk with 0 ≤  k ≤  LEN. If sjLEN is not at gLEN positions of  
any instance of sj0 then make LEN = LEN+1 
Evaluate the compression function and do djLEN = K  

     While fjLEN > 1  
next j 
Select the metasymbol Mj = sj0sj1sj2 ...sjLEN such that it has minimum djLEN
Mark as used nodes the symbols used by the Mi metasymbol in all its instances 
Update the number of free nodes of m  
i=i+1 

While FreeNodes>0 and  djLEN > 1.0 
Free nodes are grouped in the filler 
The number of metasymbols is M = i+1 
 
The fitness function for the individuals of MSIM is K and the individuals evolve to 
the best solution with MSIM’s three operators. 

3    Experiments 

A set of experiments was performed to: 

MSIM: A Pattern Based Lossless Data Compressor 187



1. Measure the efficiency of MSIM as a compressor. 
2. Set a confidence level for the expected lower bound of compression achieved with 

MSIM. 
3. Measure the efficiency of MSIM as a tool to discover the metasymbols that allow 

us to re-express a message in the most compact way. 
4. Measure the efficiency of MSIM as tool for discovering metasymbols in spite of 

the content of the messages. 
To this effect we built a set messages that contain metasymbols. The algorithm to 
generate the set is: 
 

1. Select the length of the message |m| with a value in the interval [a, b], Set i=0 
2. While there are non-used indices in m and for a maximum number of iterations  
3. i=i+1 
4. Generate a random value for |Mi| in the interval [1, |m|] 
5. Propose |Mi|-1 gaps for the symbols of the metasymbol that is being generated 
6. Generate a random value for fi in the interval [1, |m|] 
7. For j=1 to fi

8. Generate a position pi for a instance of the current metasymbol 
9. Try to put the instance of the metasymbol at pi whenever it does not over-
lap with another metasymbol. 
10. If the number of tries is exceeded do fi= number of successful outcomes 
and go to step 2 

    next j 
Wend 
11. If there remain free indices in m, group the symbols in the filler 
12. i=i+1 
13. M expresses the final number of metasymbols in m. 
14. Store in a database the properties of all the M metasymbols. 

 
Note that this algorithm simply determines the structure of the metasymbols but does 
not assign them contents; contents are determined later in the process. 
 We define a compressor called REF that represents our theoretical limit of com-
pression. It takes the information stored in the database and, from ec. 2, determines 
the number of bits (K) in the corresponding compressed message. Now, we can meas-
ure the efficiency of MSIM relative to REF as long as MSIM yields the compression 
of REF. If MSIM reaches a performance similar to the hypothetical one of REF we 
rest assured that: 

 
� MSIM is able to reach the “theoretical” limit of compression (goal 1). 
� MSIM is able to identify the metasymbols hidden in m (goal 2). 
 
We compared the compression achieved by MSIM against the compression of other 4 
compressors: LZ77, LZW, Arithmetic and PPM. 
 
Our third goal reflects our interest on the search for structural patterns which are in-
dependent of the content of the message. Hence, we generate messages with the same 
metasymbolic structure but different contents. First, we store the properties of the sets 

Kuri A., Herrera O.188



of metasymbols (order, positions and gaps) then, for a given set of metasymbols, we 
explore 5 variations of the same message by filling the metasymbols with contents de-
termined from the experimental PDF from a) Spanish text file, b) English text file, c) 
Audio compressed file, d) Image compressed file and e) Uniformly distributed data. 
Because the REF compressor is fully based on the structure of the metasymbols and is 
impervious to its contents it was used to measure the performance of MSIM as a me-
tasymbolic identification tool. 
 
We want to estimate the worst case compression value achieved for each of the com-
pressors and for each of the 5 distributions. We need to determine the values of the 
mean (μ) and the standard deviation (σ) of unknown distributions of the compression 
rates for the messages (call them distributions “A”).  We will appeal to the Central 
Limit Theorem [10] by generating the corresponding distributions where each mean is 
the average of n objects from distributions A (call them distributions “B”). If X repre-
sents an object from one distribution A for a given type of file (Spanish, for example) 
then 

n

X
X

n

1i
i

i

∑
==  

(5) 

represents an object of the corresponding distribution B.  
The mean X

μ for any of the B distributions is given by: 

Z

X
μ

i

Z

1i
X

∑
==  

(6) 

Where Z is the number of objects of the B distributions. 
The standard deviation X

σ  for distribution B is given by: 

Z

Z

1i
2)XμXi(

Xσ
∑
=

−
=  

(7) 

We generate as many messages (objects of A distributions) as were necessary until 
the next two conditions were fulfilled: 
1. For each distribution A we require that there are at least 16.6% of Z samples in 

each sextil in the associated distribution B. 
2. The value of the means of both distributions A and B are similar enough  

0.95
μ

)σ-(μ

X

X >  

In our experiments we needed 2,100 for each of the different distributions: i.e. we 
analyzed a total of  10,500 messages. 

MSIM: A Pattern Based Lossless Data Compressor 189



Then we may estimate the values of the mean  and the standard deviation σ  for 
the A distributions since: 

μ

Xμμ =  (8) 

X
σnσ =  (9) 

4    Results 

As we see in table 1, MSIM provides consistent values of compression (see μ and σ) 
for the 5 explored types of file and, as expected, regardless of the contents of the me-
tasymbols. 

Table 1. Values for the parameters μ and σ of the distributions A for different compressors 

 Message English JPG MP3 Spanish Uniform Average

Compressor        
REF  μ 1.92 1.92 1.92 1.92 1.92 1.92 

   σ 0.7 0.7 0.7 0.7 0.7 0.7 
MSIM  μ 1.58 1.66 1.66 1.58 1.66 1.62 

   σ 0.35 0.4 0.4 0.35 0.4 0.35 
PPM  μ 1.66 1.21 1.21 1.71 1.21 1.4 

   σ 0.9 0.75 0.75 0.9 0.75 0.8 
LZW  μ 1.33 1.05 1.05 1.35 1.05 1.16 

   σ 0.7 0.75 0.8 0.7 0.75 0.7 
LZ77  μ 1 0.94 0.94 0.99 0.94 0.96 

   σ 0.35 0.35 0.35 0.35 0.35 0.35 
ARIT  μ 1.55 1.25 1.25 1.57 1.25 1.37 

   σ 0.6 0.35 0.35 0.6 0.35 0.45 
 
Once we have estimated the values of the parameters for the five distributions A, we 
estimate the value of the compression for the worst case Xworst of the different com-
pressors appealing to the Chebyshev’s Theorem 

2XX k
11   σ)k μXkσP(μ −≥+≤≤−  (10) 

where k is the number of standard deviations. Assuming that the distributions A are 
symmetric we find, from ec. 10 that 

2X 2k
11X)kσP(μ −≥≤−  (11) 

Kuri A., Herrera O.190



and then is possible to estimate the expected compression value Xworst for all distribu-
tions. It immediately follows that . Table 2 shows the 
experimental results.  

0.7X)kσP(μ ≥≤−  1.3k =→

Table 2. Values of the worst case compression rates 

Compressor Message English JPG MP3 Spanish Uniform Average 

REF Xworst 1.01 1.01 1.01 1.01 1.01 1.01 
MSIM Xworst 1.12 1.14 1.14 1.12 1.14 1.13 
PPM Xworst 0.49 0.23 0.23 0.54 0.23 0.34 
LZW Xworst 0.42 0.07 0.01 0.44 0.07 0.20 
LZ77 Xworst 0.54 0.48 0.48 0.53 0.48 0.50 

Arithmetic Xworst 0.77 0.79 0.79 0.79 0.79 0.78 

 
From table 2 we know that in 70% of the cases MSIM achieves better performance 

than the other compressors and that its behavior is not a function of the contents of the 
messages. 

Finally, we analyze the likelihood between the distributions B of REF and the dis-
tributions B of MSIM. Remember that REF does not depend of the metasymbol con-
tents so its five B distributions are identical. In table 3 we can appreciate how MSIM 
distributions display similar behavior as REF distributions. A direct conclusion is that 
MSIM also does not depend of the contents. A goodness test of fit was used to test 
this hypothesis. We can see, from table 3, that the χ2 values for MSIM are small 
enough. In contrast see, for example, the cases of PPM (χ2 > 22), JPG, MP3 and Uni-
form. They reveal strong dependency between their performance and the content of 
the messages. Other compressors (LZW, LZ77, Arithmetic, Huffman, etc.) behave 
similarly but we are unable to show the corresponding numbers for lack of space. 

Table 3. values for 35 distributions B 2χ
Compre- 
ssor 

Message Sextil1 Sextil2 Sextil3 Sextil4 Sextil5 Sextil6 χ2

REF English 13 10 12 16 23 10 0.00 
 JPG 13 10 12 16 23 10 0.00 
 MP3 13 10 12 16 23 10 0.00 
 Spanish 13 10 12 16 23 10 0.00 
 Uniform 13 10 12 16 23 10 0.00 
MSIM English 12 9 16 19 14 14 7.19 
 JPG 10 12 11 20 18 13 4.16 
 MP3 10 11 12 20 18 13 3.78 
 Spanish 12 8 18 18 14 14 8.85 
 Uniform 10 14 12 15 19 14 4.65 
PPM English 12 12 16 16 15 13 5.49 

MSIM: A Pattern Based Lossless Data Compressor 191



 JPG 11 20 18 14 9 12 22.48 
 MP3 10 21 18 14 9 12 24.96 
 Spanish 13 9 16 19 14 13 6.42 
 Uniform 11 20 18 14 9 12 22.48 

5    Conclusions 

The performance of MSIM has been compared with other compressors by compress-
ing large sets of files that contain the same structure but different contents. Statistical 
validation allows us to obtain lower bounds on the compression ratio of the acknowl-
edged “best” compressors and MSIM stands out in all cases. The application of 
MSIM, however, relies on relatively large execution times and, until we are able to 
identify a faster algorithm, is more suitable for archival purposes, where the emphasis 
is on optimal compression and multiple accesses rather than on real time applications. 
 On the other hand, the principle of minimum description length, which un-
derlies MSIM, translates in an unsupervised pattern recognition method where deep 
similarities between apparently dissimilar sets of data are likely to be found. At pre-
sent this characteristic is being applied to the discovery of functional relationships in 
biological genomic sequences. 

References 

1.  Nelson, M., Gailly, J. L., The Data Compression Book, Second Edition, M&T Books Red-
 wood City, CA (1995). 

2.  Huffman, D. A., “A method for the construction of minimum-redundancy codes”, Proc. Inst. 
Radio Eng. 40, 9 (.), 1098–1101, Sept 1952. 

3. Witten, I. H., R. Neal, and J. G. Cleary. 1987. “Arithmetic coding for data compression”,  
Communications of the ACM 30(6): 520-540. 

4.  Ziv, J., and Lempel, A., “A Universal Algorithm for Sequential Data Compression”, IEEE 
Trans. on Inf. Theory IT-23, 3 (May 1977), 337-343.  

5. Burrows, M., and Wheeler, D. J., “A block-sorting lossless data compression algorithm”, 
Digital Syst. Res. Ctr., Palo Alto, CA, Tech. Rep. SRC 124, May 1994. 

6.  Cleary, J. G. and Witten, I. H., “Data compression using adaptive coding and partial string 
     matching”, IEEE Transactions on Communications, Vol. 32, No. 4, 396-402, April 1984. 
7.  Kuri, A. and Galaviz, J., “Pattern-based data compression”, Lecture Notes in Artificial Intel-
     ligence LNAI 2972, 2004, pp. 1-10. 
8. Kuri, A., “Solution of Simultaneous Non-Linear Equations using Genetic Algorithms”, 
     WSEAS Transactions on Systems, Issue 1, Vol. 2, 2003, pp. 44-51. 
9.  Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning, Addison 

 Wesley Publishing, 1989. 
10. Feller, W., An Introduction to Probability Theory and Its Applications, pp. 233-234, John 

 Wiley, 2nd. Edition, 1968. 

Kuri A., Herrera O.192


